3.256 \(\int \frac{(A+B \cos (c+d x)) \sec ^3(c+d x)}{a+b \cos (c+d x)} \, dx\)

Optimal. Leaf size=143 \[ -\frac{2 b^2 (A b-a B) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^3 d \sqrt{a-b} \sqrt{a+b}}+\frac{\left (a^2 A-2 a b B+2 A b^2\right ) \tanh ^{-1}(\sin (c+d x))}{2 a^3 d}-\frac{(A b-a B) \tan (c+d x)}{a^2 d}+\frac{A \tan (c+d x) \sec (c+d x)}{2 a d} \]

[Out]

(-2*b^2*(A*b - a*B)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a^3*Sqrt[a - b]*Sqrt[a + b]*d) + ((a^
2*A + 2*A*b^2 - 2*a*b*B)*ArcTanh[Sin[c + d*x]])/(2*a^3*d) - ((A*b - a*B)*Tan[c + d*x])/(a^2*d) + (A*Sec[c + d*
x]*Tan[c + d*x])/(2*a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.490337, antiderivative size = 143, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.194, Rules used = {3000, 3055, 3001, 3770, 2659, 205} \[ -\frac{2 b^2 (A b-a B) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^3 d \sqrt{a-b} \sqrt{a+b}}+\frac{\left (a^2 A-2 a b B+2 A b^2\right ) \tanh ^{-1}(\sin (c+d x))}{2 a^3 d}-\frac{(A b-a B) \tan (c+d x)}{a^2 d}+\frac{A \tan (c+d x) \sec (c+d x)}{2 a d} \]

Antiderivative was successfully verified.

[In]

Int[((A + B*Cos[c + d*x])*Sec[c + d*x]^3)/(a + b*Cos[c + d*x]),x]

[Out]

(-2*b^2*(A*b - a*B)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a^3*Sqrt[a - b]*Sqrt[a + b]*d) + ((a^
2*A + 2*A*b^2 - 2*a*b*B)*ArcTanh[Sin[c + d*x]])/(2*a^3*d) - ((A*b - a*B)*Tan[c + d*x])/(a^2*d) + (A*Sec[c + d*
x]*Tan[c + d*x])/(2*a*d)

Rule 3000

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[((A*b^2 - a*b*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*
Sin[e + f*x])^(1 + n))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int
[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(a*A - b*B)*(b*c - a*d)*(m + 1) + b*d*(A*b - a*B)*(m
 + n + 2) + (A*b - a*B)*(a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] - b*d*(A*b - a*B)*(m + n + 3)*Sin[e + f*x]^2,
 x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^
2, 0] && RationalQ[m] && m < -1 && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n,
-1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3055

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dis
t[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b
*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(b*
c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Lt
Q[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&
  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3001

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/(a + b*Sin[e + f*x]), x], x] + Dist[(B*c - A
*d)/(b*c - a*d), Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0]
 && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{(A+B \cos (c+d x)) \sec ^3(c+d x)}{a+b \cos (c+d x)} \, dx &=\frac{A \sec (c+d x) \tan (c+d x)}{2 a d}+\frac{\int \frac{\left (-2 (A b-a B)+a A \cos (c+d x)+A b \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{a+b \cos (c+d x)} \, dx}{2 a}\\ &=-\frac{(A b-a B) \tan (c+d x)}{a^2 d}+\frac{A \sec (c+d x) \tan (c+d x)}{2 a d}+\frac{\int \frac{\left (a^2 A+2 A b^2-2 a b B+a A b \cos (c+d x)\right ) \sec (c+d x)}{a+b \cos (c+d x)} \, dx}{2 a^2}\\ &=-\frac{(A b-a B) \tan (c+d x)}{a^2 d}+\frac{A \sec (c+d x) \tan (c+d x)}{2 a d}-\frac{\left (b^2 (A b-a B)\right ) \int \frac{1}{a+b \cos (c+d x)} \, dx}{a^3}+\frac{\left (a^2 A+2 A b^2-2 a b B\right ) \int \sec (c+d x) \, dx}{2 a^3}\\ &=\frac{\left (a^2 A+2 A b^2-2 a b B\right ) \tanh ^{-1}(\sin (c+d x))}{2 a^3 d}-\frac{(A b-a B) \tan (c+d x)}{a^2 d}+\frac{A \sec (c+d x) \tan (c+d x)}{2 a d}-\frac{\left (2 b^2 (A b-a B)\right ) \operatorname{Subst}\left (\int \frac{1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{a^3 d}\\ &=-\frac{2 b^2 (A b-a B) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^3 \sqrt{a-b} \sqrt{a+b} d}+\frac{\left (a^2 A+2 A b^2-2 a b B\right ) \tanh ^{-1}(\sin (c+d x))}{2 a^3 d}-\frac{(A b-a B) \tan (c+d x)}{a^2 d}+\frac{A \sec (c+d x) \tan (c+d x)}{2 a d}\\ \end{align*}

Mathematica [B]  time = 1.59362, size = 300, normalized size = 2.1 \[ \frac{\frac{8 b^2 (A b-a B) \tanh ^{-1}\left (\frac{(a-b) \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{b^2-a^2}}\right )}{\sqrt{b^2-a^2}}-2 \left (a^2 A-2 a b B+2 A b^2\right ) \log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )+2 \left (a^2 A-2 a b B+2 A b^2\right ) \log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )+\frac{a^2 A}{\left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )^2}-\frac{a^2 A}{\left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )^2}+\frac{4 a (a B-A b) \sin \left (\frac{1}{2} (c+d x)\right )}{\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )}+\frac{4 a (a B-A b) \sin \left (\frac{1}{2} (c+d x)\right )}{\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )}}{4 a^3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[((A + B*Cos[c + d*x])*Sec[c + d*x]^3)/(a + b*Cos[c + d*x]),x]

[Out]

((8*b^2*(A*b - a*B)*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/Sqrt[-a^2 + b^2] - 2*(a^2*A + 2*A*b^
2 - 2*a*b*B)*Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] + 2*(a^2*A + 2*A*b^2 - 2*a*b*B)*Log[Cos[(c + d*x)/2] + S
in[(c + d*x)/2]] + (a^2*A)/(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])^2 + (4*a*(-(A*b) + a*B)*Sin[(c + d*x)/2])/(Co
s[(c + d*x)/2] - Sin[(c + d*x)/2]) - (a^2*A)/(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^2 + (4*a*(-(A*b) + a*B)*Sin
[(c + d*x)/2])/(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]))/(4*a^3*d)

________________________________________________________________________________________

Maple [B]  time = 0.151, size = 410, normalized size = 2.9 \begin{align*}{\frac{A}{2\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-2}}+{\frac{A}{2\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-1}}+{\frac{Ab}{{a}^{2}d} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-1}}-{\frac{B}{da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-1}}-{\frac{A}{2\,da}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) }-{\frac{A{b}^{2}}{d{a}^{3}}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) }+{\frac{Bb}{{a}^{2}d}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) }-{\frac{A}{2\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-2}}+{\frac{A}{2\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-1}}+{\frac{Ab}{{a}^{2}d} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-1}}-{\frac{B}{da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-1}}+{\frac{A}{2\,da}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }+{\frac{A{b}^{2}}{d{a}^{3}}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }-{\frac{Bb}{{a}^{2}d}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }-2\,{\frac{A{b}^{3}}{d{a}^{3}\sqrt{ \left ( a-b \right ) \left ( a+b \right ) }}\arctan \left ({\frac{\tan \left ( 1/2\,dx+c/2 \right ) \left ( a-b \right ) }{\sqrt{ \left ( a-b \right ) \left ( a+b \right ) }}} \right ) }+2\,{\frac{{b}^{2}B}{{a}^{2}d\sqrt{ \left ( a-b \right ) \left ( a+b \right ) }}\arctan \left ({\frac{\tan \left ( 1/2\,dx+c/2 \right ) \left ( a-b \right ) }{\sqrt{ \left ( a-b \right ) \left ( a+b \right ) }}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c))*sec(d*x+c)^3/(a+b*cos(d*x+c)),x)

[Out]

1/2/d*A/a/(tan(1/2*d*x+1/2*c)-1)^2+1/2/d*A/a/(tan(1/2*d*x+1/2*c)-1)+1/d/a^2/(tan(1/2*d*x+1/2*c)-1)*A*b-1/d/a/(
tan(1/2*d*x+1/2*c)-1)*B-1/2/d*A/a*ln(tan(1/2*d*x+1/2*c)-1)-1/d/a^3*ln(tan(1/2*d*x+1/2*c)-1)*A*b^2+1/d/a^2*ln(t
an(1/2*d*x+1/2*c)-1)*B*b-1/2/d*A/a/(tan(1/2*d*x+1/2*c)+1)^2+1/2/d*A/a/(tan(1/2*d*x+1/2*c)+1)+1/d/a^2/(tan(1/2*
d*x+1/2*c)+1)*A*b-1/d/a/(tan(1/2*d*x+1/2*c)+1)*B+1/2/d*A/a*ln(tan(1/2*d*x+1/2*c)+1)+1/d/a^3*ln(tan(1/2*d*x+1/2
*c)+1)*A*b^2-1/d/a^2*ln(tan(1/2*d*x+1/2*c)+1)*B*b-2/d*b^3/a^3/((a-b)*(a+b))^(1/2)*arctan(tan(1/2*d*x+1/2*c)*(a
-b)/((a-b)*(a+b))^(1/2))*A+2/d*b^2/a^2/((a-b)*(a+b))^(1/2)*arctan(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2)
)*B

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^3/(a+b*cos(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 22.0896, size = 1334, normalized size = 9.33 \begin{align*} \left [\frac{2 \,{\left (B a b^{2} - A b^{3}\right )} \sqrt{-a^{2} + b^{2}} \cos \left (d x + c\right )^{2} \log \left (\frac{2 \, a b \cos \left (d x + c\right ) +{\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt{-a^{2} + b^{2}}{\left (a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right ) - a^{2} + 2 \, b^{2}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}\right ) +{\left (A a^{4} - 2 \, B a^{3} b + A a^{2} b^{2} + 2 \, B a b^{3} - 2 \, A b^{4}\right )} \cos \left (d x + c\right )^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) -{\left (A a^{4} - 2 \, B a^{3} b + A a^{2} b^{2} + 2 \, B a b^{3} - 2 \, A b^{4}\right )} \cos \left (d x + c\right )^{2} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \,{\left (A a^{4} - A a^{2} b^{2} + 2 \,{\left (B a^{4} - A a^{3} b - B a^{2} b^{2} + A a b^{3}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{4 \,{\left (a^{5} - a^{3} b^{2}\right )} d \cos \left (d x + c\right )^{2}}, \frac{4 \,{\left (B a b^{2} - A b^{3}\right )} \sqrt{a^{2} - b^{2}} \arctan \left (-\frac{a \cos \left (d x + c\right ) + b}{\sqrt{a^{2} - b^{2}} \sin \left (d x + c\right )}\right ) \cos \left (d x + c\right )^{2} +{\left (A a^{4} - 2 \, B a^{3} b + A a^{2} b^{2} + 2 \, B a b^{3} - 2 \, A b^{4}\right )} \cos \left (d x + c\right )^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) -{\left (A a^{4} - 2 \, B a^{3} b + A a^{2} b^{2} + 2 \, B a b^{3} - 2 \, A b^{4}\right )} \cos \left (d x + c\right )^{2} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \,{\left (A a^{4} - A a^{2} b^{2} + 2 \,{\left (B a^{4} - A a^{3} b - B a^{2} b^{2} + A a b^{3}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{4 \,{\left (a^{5} - a^{3} b^{2}\right )} d \cos \left (d x + c\right )^{2}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^3/(a+b*cos(d*x+c)),x, algorithm="fricas")

[Out]

[1/4*(2*(B*a*b^2 - A*b^3)*sqrt(-a^2 + b^2)*cos(d*x + c)^2*log((2*a*b*cos(d*x + c) + (2*a^2 - b^2)*cos(d*x + c)
^2 - 2*sqrt(-a^2 + b^2)*(a*cos(d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x +
 c) + a^2)) + (A*a^4 - 2*B*a^3*b + A*a^2*b^2 + 2*B*a*b^3 - 2*A*b^4)*cos(d*x + c)^2*log(sin(d*x + c) + 1) - (A*
a^4 - 2*B*a^3*b + A*a^2*b^2 + 2*B*a*b^3 - 2*A*b^4)*cos(d*x + c)^2*log(-sin(d*x + c) + 1) + 2*(A*a^4 - A*a^2*b^
2 + 2*(B*a^4 - A*a^3*b - B*a^2*b^2 + A*a*b^3)*cos(d*x + c))*sin(d*x + c))/((a^5 - a^3*b^2)*d*cos(d*x + c)^2),
1/4*(4*(B*a*b^2 - A*b^3)*sqrt(a^2 - b^2)*arctan(-(a*cos(d*x + c) + b)/(sqrt(a^2 - b^2)*sin(d*x + c)))*cos(d*x
+ c)^2 + (A*a^4 - 2*B*a^3*b + A*a^2*b^2 + 2*B*a*b^3 - 2*A*b^4)*cos(d*x + c)^2*log(sin(d*x + c) + 1) - (A*a^4 -
 2*B*a^3*b + A*a^2*b^2 + 2*B*a*b^3 - 2*A*b^4)*cos(d*x + c)^2*log(-sin(d*x + c) + 1) + 2*(A*a^4 - A*a^2*b^2 + 2
*(B*a^4 - A*a^3*b - B*a^2*b^2 + A*a*b^3)*cos(d*x + c))*sin(d*x + c))/((a^5 - a^3*b^2)*d*cos(d*x + c)^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (A + B \cos{\left (c + d x \right )}\right ) \sec ^{3}{\left (c + d x \right )}}{a + b \cos{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)**3/(a+b*cos(d*x+c)),x)

[Out]

Integral((A + B*cos(c + d*x))*sec(c + d*x)**3/(a + b*cos(c + d*x)), x)

________________________________________________________________________________________

Giac [B]  time = 1.64769, size = 363, normalized size = 2.54 \begin{align*} \frac{\frac{{\left (A a^{2} - 2 \, B a b + 2 \, A b^{2}\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right )}{a^{3}} - \frac{{\left (A a^{2} - 2 \, B a b + 2 \, A b^{2}\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right )}{a^{3}} - \frac{4 \,{\left (B a b^{2} - A b^{3}\right )}{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{a^{2} - b^{2}}}\right )\right )}}{\sqrt{a^{2} - b^{2}} a^{3}} + \frac{2 \,{\left (A a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 2 \, B a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 2 \, A b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + A a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 2 \, B a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 2 \, A b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}^{2} a^{2}}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^3/(a+b*cos(d*x+c)),x, algorithm="giac")

[Out]

1/2*((A*a^2 - 2*B*a*b + 2*A*b^2)*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^3 - (A*a^2 - 2*B*a*b + 2*A*b^2)*log(abs(
tan(1/2*d*x + 1/2*c) - 1))/a^3 - 4*(B*a*b^2 - A*b^3)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arcta
n(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/sqrt(a^2 - b^2)))/(sqrt(a^2 - b^2)*a^3) + 2*(A*a*tan(1/2*
d*x + 1/2*c)^3 - 2*B*a*tan(1/2*d*x + 1/2*c)^3 + 2*A*b*tan(1/2*d*x + 1/2*c)^3 + A*a*tan(1/2*d*x + 1/2*c) + 2*B*
a*tan(1/2*d*x + 1/2*c) - 2*A*b*tan(1/2*d*x + 1/2*c))/((tan(1/2*d*x + 1/2*c)^2 - 1)^2*a^2))/d